游客
题文

某农谷生态园响应国家发展有机农业政策,大力种植有机蔬菜,某超市看好甲、乙两种有机蔬菜的市场价值,经调查甲种蔬菜进价每千克 m 元,售价每千克 16 元;乙种蔬菜进价每千克 n 元,售价每千克 18 元.

1 )该超市购进甲种蔬菜 10 千克和乙种蔬菜 5 千克需要 170 元;购进甲种蔬菜 6 千克和乙种蔬菜 10 千克需要 200 元.求 m n 的值.

2 )该超市决定每天购进甲、乙两种蔬菜共 100 千克,且投入资金不少于 1160 元又不多于 1168 元,设购买甲种蔬菜 x 千克,求有哪几种购买方案.

3 )在( 2 )的条件下,超市在获得的利润取得最大值时,决定售出的甲种蔬菜每千克捐出 2 a 元,乙种蔬菜每千克捐出 a 元给当地福利院,若要保证捐款后的利润率不低于 20% ,求 a 的最大值.

科目 数学   题型 解答题   难度 中等
登录免费查看答案和解析
相关试题

阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,D为BC中点,E、F分别为AB、AC上一点,且ED⊥DF,
求证:BE+CF>EF.
小明发现,延长FD到点H,使DH=FD,连结BH、EH,构造△BDH和△EFH,通过证明△BDH与△CDF全等、△EFH为等腰三角形,利用△BEH使问题得以解决(如图2).
参考小明思考问题的方法,解决问题:
如图3,在矩形ABCD中,O为对角线AC中点,将矩形ABCD翻折,使点B恰好与点O重合,EF为折痕,猜想EF、BE、FC之间的数量关系?并证明你的猜想.

在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD,直线l:y=kx+3.

(1)当直线l经过D点时,求点D的坐标及k的值;
(2)当直线l与正方形有两个交点时,直接写出k的取值范围.

已知,如图,在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0),C(0,4),点D是OA的中点,点P在BC边上运动.当△ODP是腰长为5的等腰三角形时,求点P的坐标.

如图,△ABC中,∠BCA=90°,CD是边AB上的中线,分别过点C,D作BA和BC的平行线,两线交于点E,且DE交AC于点O,连接AE.

(1)求证:四边形ADCE是菱形;
(2)若∠B=60°,BC=6,求四边形ADCE的面积.

如图,是某工程队在“村村通”工程中修筑的公路长度y(米)与时间x(天)(其中0≤x≤8)之间的关系图象.根据图象提供的信息,求该公路的长.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号