如图,在 中, ,点 是 边的中点,点 在 边上, 经过点 且与 边相切于点 , .
(1)求证: 是 的切线;
(2)若 , ,求 的半径及 的长.
如图,E、F是平行四边形ABCD的对角线AC上的两点,AE=CF.求证:DE=BF.
如图,等腰Rt△ABD中,AB=AD,点M 为边AD上一动点,点E在DA的延长线上,且AM=AE,以BE为直角边,向外作等腰Rt△BEG,MG交AB于N,连NE、DN.
(1)求证:∠BEN=∠BGN.
(2)求的值.
(3)当M在AD上运动时,探究四边形BDNG的形状,并证明之.
如图,在平面直角坐标系中,点A、B分别在x轴y轴的正半轴上,线段OA的长是不等式5x﹣4<3(x+2)的最大整数解,线段OB的长是一元二次方程x2﹣2x﹣3=0的一个根,将Rt△ABO沿BE折叠,使AB边落在OB边所在的y轴上,点A与点D重合.
(1)求OA、OB的长;
(2)求直线BE的解析式;
(3)在平面内是否存在点M,使B、O、E、M为顶点的四边形为平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.
如图,在▱ABCD中,对角线BD⊥AB,G为BD延长线上一点且△CBG为等边三角形,∠BCD、∠ABD的角平分线相交于点E,连接CE交BD于点F,连接GE.
(1)若CG的长为8,求▱ABCD的面积;
(2)求证:CE=BE+GE.
如图,已知▱ABCD的周长为100,对角线AC、BD相交于点O,△AOD与△AOB的周长之差为20,求AD,CD的长.