已知二次函数 的图象经过两点 .
(1)如果 都是整数,且 ,求 的值;
(2)设二次函数 的图象与 轴的交点为 ,与 轴的交点为 .如果关于 的方程 的两个根都是整数,求 的面积.
(本小题满分10分)如图,四边形OABC是边长为4的正方形,点P为OA边上任意一点(与点O、A不重合),连结CP,过点P作PM⊥CP交AB于点D,且PM=CP,过点M作MN∥OA,交BO于点N,连结ND、BM,设OP=.
(1)求点M的坐标(用含的代数式表示);
(2)试判断线段MN的长度是否随点P的位置的变化而改变?并说明理由;
(3)当为何值时,四边形BNDM的面积最小.
(本小题满分10分)如图,顶点M在轴上的抛物线与直线
相交于A、B两点,且点A在
轴上,点B的横坐标为2,连结AM、BM.
(1)求抛物线的函数关系式;
(2)判断△ABM的形状,并说明理由;
(3)把抛物线与直线的交点称为抛物线的不动点.若将(1)中抛物线平移,使其顶点为(
,
),当
满足什么条件时,平移后的抛物线总有不动点?
(本小题满分8分)如图,AB是⊙O的直径,点C、D为半圆O的三等分点,过点C作CE⊥AD,交AD的延长线于点E.
(1)求证:CE为⊙O的切线;
(2)判断四边形AOCD是否为菱形?并说明理由.
(本小题满分8分)某药品研究所开发一种抗菌新药,经多年动物实验,首次用于临床人体实验.测得成人服药后血液中药物深度(微克/毫升)与服药时间
小时之间的函数关系如图所示(当
时,
与
成反比).
(1)根据图象分别求出血液中药物浓度上升和下降阶段与
之间的函数关系式;
(2)问血液中药物浓度不低于4微克/毫升的持续时间为多少小时?
(本小题满分6分)某校学生会正筹备一个“庆毕业”文艺汇演活动,现准备从4名(其中两男两女)节目主持候选人中,随机选取两人担任节目主持人,请用列表法或画树状图求选出的两名主持人“恰好为一男一女”的概率.