点 到图形 (可以是线段、三角形、圆或不规则图形等)的距离是指点 与图形 中所有点连接的线段中最短线段的长度.如图①中的两个虚线段 的长度都表示点 到图形 的距离.
如图②,在平面直角坐标系 中, 的三个顶点坐标分别为 ,点 从原点出发,以每秒 个单位长度的速度向 轴的正方向运动了 .
(1)当 时,求点 到 的距离;
(2)当点 到 的距离等于线段 的长度时,求 的取值范围;
(3)当点 到 的距离大于 时,求 的取值范围.
解方程
先化简,再求值:,其中
.
一包装礼盒是底面为正方形的无盖立体图形,其展开图如所示:是由一个正方形与四个正六边形组成,已知正六边形的边长为a,甲、乙两人分别用长方形和圆形硬板纸裁剪包装纸盒.
(1)问甲、乙两人谁的硬板纸利用率高,请通过计算长方形和圆的面积说明原因。
(2)你能设计出利用率更高的长方形硬板纸吗?请在展开图外围画出长方形硬板纸形状。
定义为函数
的 “特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}.
(1)将“特征数”是的函数图象向上平移2个单位,得到一个新函数,这个函数的解析式是;
(2)在(1)中,平移前后的两个函数分别与y轴交于O、A两点,与直线分别交于C、B两点,判断以A、B、C、O四点为顶点的四边形形状,并说明理由。
(3)若(2)中的四边形(不包括边界)始终覆盖着“特征数”是的函数图象的一部分,求满足条件的实数b的取值范围?
在直角坐标系中,O为坐标原点,点A的坐标为(2,2),点C是线段OA上的一个动点(不运动至O,A两点),过点C作CD⊥x轴,垂足为D,以CD为边在右侧作正方形CDEF.连接AF并延长交x轴的正半轴于点B,连接OF,设OD=t.
(1)求tan∠FOB的值;
(2)用含t的代数式表示△OAB的面积S;