如图①,在, 中,以下是小亮探究 与 之间关系的方法:
根据你掌握的三角函数知识.在图②)的锐角 中,探究 之间的关系,并写出探究过程.
某长途汽车客运公司规定旅客可免费携带一定质量的行李,当行李的质量超过规定时,需要购买行李票.已知行李费y(元)是行李质量x(kg)之间的函数表达式为y=kx+b.这个函数的图像如图所示:
(1)求k和b的值;
(2)求旅客最多可免费携带行李的质量;
(3)求行李费为4~15元时,旅客携带行李的质量为多少?
如图,OABC是一张放在平面直角坐标系中的长方形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=10,OC=8,在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D、E两点的坐标.
对于气温,有的地方用摄氏温度表示,有的地方用华氏温度表示,摄氏温度与华氏温度之间存在一次函数关系.从温度计的刻度上可以看出,摄氏温度x(℃)与华氏温度y(℉)有如下的对应关系:
x(℃) |
… |
-10 |
0 |
10 |
20 |
30 |
… |
y(℉) |
… |
14 |
32 |
50 |
68 |
86 |
… |
(1)试确定y与x之间的函数关系。
(2)某天,滨海的最高气温是25℃,澳大利亚悉尼的最高气温80℉,这一天哪个地区的最高气温较高?
画出函数y=-3x+2的图像
(1)试判断点P(2,-5)是否在此函数的图像上,并说明理由.
(2)求出此直线与坐标轴交点的坐标以及此直线与坐标轴所围成的三角形面积.
已知y-5与x成正比例,且当x=-2时,y=-1.
(1)写出y与x之间的函数关系式;
(2)当x=4时,求y的值;