现有一张矩形纸片 (如图)。其中 ,点 是 的中点,将纸片沿直线 折叠,点 落在四边形 内,记为点 ,求线段 的长.
为了解某县2011年初中毕业生的实验考查成绩等
级的分布情况,随机抽取了该县若干名学生的实验考查成绩进行统计分析,并根据抽取的成
绩绘制了如下的统计图表:
成绩等级 |
A |
B |
C |
D |
人数 |
60 |
x |
y |
10 |
百分比 |
30% |
50% |
15% |
m |
请根据以上统计图表提供的信息,解答下列问题:
⑴本次抽查的学生有___________________名;
⑵表中x,y和m所表示的数分别为:x=________,y=______,m=_________;
⑶请补全条形统计图;
⑷根据抽样调查结果,请你估计2011年该县5400名初中毕业生实验考查成绩为D类的学生人数.
在如图所示的正方形网格中,每个小正方形的边长
为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A,C的坐标分别为( ,
5),( ,3).
⑴请在如图所示的网格平面内作出平面直角坐标系;
⑵请作出△ABC关于y轴对称的△A′B′C′;
⑶写出点B′的坐标.
解方程组:
如图,点C为线段AB上任意一点(不与A、B重合),分别以AC、BC为一腰在AB的同侧作等腰△ACD和等腰△BCE,CA=CD,CB=CE,∠ACD与∠BCE都是锐角且∠ACD=∠BCE,连接AE交CD于点M,连接BD交CE于点N,AE与BD交于点P,连接PC.
(1)求证:△ACE≌△DCB;
(2)请你判断△AMC与△DMP的形状有何关系并说明理由;
(3)求证:∠APC=∠BPC.
如图,矩形OABC中,点O为原点,点A的坐标为(0,8),点C的坐标为(6,0).抛物线经过A、C两点,与AB边交于点D.
(1)求抛物线的函数表达式;
(2)点P为线段BC上一个动点(不与点C重合),点Q为线段AC上一个动点,AQ=CP,连接PQ,设CP=m,△CPQ的面积为S.
①求S关于m的函数表达式,并求出m为何值时,S取得最大值;
②当S最大时,在抛物线的对称轴l上若存在点F,使△FDQ为直角三角形,请直接写出所有符合条件的F的坐标;若不存在,请说明理由.