某班参加一次智力竞赛,共 三道题,每题或者得满分或者得 分,其中题 满分 题满分分别为 分,竞赛结果,每个学生至少答对了一题,三题全答对的有 人,答对其中两道题的有 人,答对题 的人数与答对题 的人数之和为 ;答对题 的人数与答对题 的人数之和为 ;答对题 的人数与答对题 的人数之和为 ,问这个班的平均成绩是多少?
计算:(1)(2)
(3)(4)
阅读下列材料:
一般地,n个相同的因数a相乘记为an,记为an.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若an=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为logab(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).
(1)计算以下各对数的值:
log24= ,log216= ,log264= .
(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;
(3)由(2)的结果,你能归纳出一个一般性的结论吗?
logaM+logaN= ;(a>0且a≠1,M>0,N>0)
(4)根据幂的运算法则:an•am=an+m以及对数的含义证明上述结论.
已知am=3,an=21,求am+n的值.
如图,在△ABC中,AD平分∠BAC,P为线段AD上的一个动点,PE⊥AD交直线BC于点E.
(1)若∠B=35°,∠ACB=85°,求∠E的度数;
(2)当P点在线段AD上运动时,猜想∠E与∠B、∠ACB的数量关系,写出结论无需证明.
已知:E是AB、CD外一点,∠D=∠B+∠E,求证:AB∥CD.