某校九年级(1)班 名学生参加 跳绳体育考试. 跳绳次数与频数经统计后绘制出下面的频数分布表( 表示为大于等于 并且小于 )和扇形统计图,(如图).
(1)求 的值;
(2)求该班 跳绳成绩在 分以上(含 分)的人数占全班人数的百分比;
(3)根据频数分布表估计该班学生 跳绳的平均分大约是多少?并说明理由.
(本题14分)在平面直角坐标系中,已知抛物线经过、
、
三点.
⑴ 求抛物线的解析式;
⑵ 若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S.求S关于m的函数关系式,并求出S的最大值;
⑶ 若点P是抛物线上的动点,点Q是直线上的动点,判断有几个位置能使以点P、Q、B、O为顶点的四边形为平行四边形,直接写出相应的点Q的坐标.
如图是一种新型滑梯的示意图,其中线段PA是高度为6米的平台,滑道AB是函数的图像的一部分,滑道BCD是二次函数图像的一部分,两滑道的连接点B为抛物线的顶点,且B点到地面的距离为2米,当甲同学滑到C点时,距地面的距离为1米,距点B的水平距离CE也为1米。
(1) 试求滑道BCD所在抛物线的解析式;
(2) 试求甲同学从点A滑到地面上D点时,所经过的水平距离.
南博汽车城销售某种型号的汽车,每辆进货价为25万元,市场调研表明:当销售价为29万元时,平均每周能售出8辆,而当销售价每降低0.5万元时,平均每周能多售出4辆.如果设每辆汽车降价万元,每辆汽车的销售利润为
万元.(销售利润
销售价
进货价)
(1)求与
的函数关系式;在保证商家不亏本的前提下,写出
的取值范围;
(2)假设这种汽车平均每周的销售利润为万元,试写出
与
之间的函数关系式;
(3)当每辆汽车的定价为多少万元时,平均每周的销售利润最大?最大利润是多少?
(本题满分10分)某地震救援队探测出某建筑物废墟下方点处有生命迹象,已知废墟一侧地面上两探测点A,B相距3米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C的深度.(结果保留根号)
(本题满分10分) 如图,有一段斜坡BC长为10米,坡角∠CBD=10°,为使残疾人的轮椅车通行更省力,现准备把坡角降为5°
(1)求斜坡新起点A到原起点B的距离;
(2)求坡高CD(结果保留3个有效数字).
参考数据:=0.1736 ,
=0.9848,
=0.1763.