游客
题文

已知抛物线y=ax2+bx+c与x轴交于A、B两点,与y轴交于点C,其中点B在x轴的正半轴上,点C在y轴的正半轴上,线段OB.OC的长(OB<OC)是方程x2-10x+16=0的两个根,且抛物线的对称轴是直线x=-2.
求A、B、C三点的坐标;
求此抛物线的表达式
连接AC、BC,若点E是线段AB上的一个动点(与点A.点B不重合),过点E作EF∥AC交BC于点F,连接CE,设AE的长为m,△CEF的面积为S,求S与m之间的函数关系式,并写出自变量m的取值范围;
在(3)的基础上试说明S是否存在最大值,若存在,请求出S的最大值,并求出此时点E的坐标,判断此时△BCE的形状;若不存在,请说明理由

科目 数学   题型 解答题   难度 较易
知识点: 二次函数在给定区间上的最值
登录免费查看答案和解析
相关试题

如图,在△ABC中,∠C=90°,∠BAC的平分线交BC于点DDEAD,交AB于点EAE为⊙O的直径

(1)判断BC与⊙O的位置关系,并证明你的结论;

(2)求证:△ABD∽△DBE

(3)若 = cos B = 2 2 3 AE=4,求CD

某商场第一次用11000元购进某款拼装机器人进行销售,很快销售一空,商家又用24000元第二次购进同款机器人,所购进数量是第一次的2倍,但单价贵了10元.

(1)求该商家第一次购进机器人多少个?

(2)若所有机器人都按相同的标价销售,要求全部销售完毕的利润率不低于20%(不考虑其它因素),那么每个机器人的标价至少是多少元?

如图,在正方形ABCD中,点E(与点BC不重合)是BC边上一点,将线段EA绕点E顺时针旋转90°到EF,过点FBC的垂线交BC的延长线于点G,连接CF

(1)求证:△ABE≌△EGF

(2)若AB=2,SABE=2SECF,求BE

已知反比例函数 y = k x 与一次函数yx+2的图象交于点A(﹣3,m

(1)求反比例函数的解析式;

(2)如果点M的横、纵坐标都是不大于3的正整数,求点M在反比例函数图象上的概率.

甲、乙两名射击运动员在某次训练中各射击10发子弹,成绩如表:

8

9

7

9

8

6

7

8

10

8

6

7

9

7

9

10

8

7

7

10

=8,S2=1.8,根据上述信息完成下列问题:

(1)将甲运动员的折线统计图补充完整;

(2)乙运动员射击训练成绩的众数是  ,中位数是  

(3)求甲运动员射击成绩的平均数和方差,并判断甲、乙两人本次射击成绩的稳定性.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号