游客
题文

如图,在平面直角坐标系中,抛物线 y = 1 2 x 2 + bx + c 与直线AB交于点 A 0 , 4 B 4 , 0

(1)求该抛物线的函数表达式;

(2)点P是直线AB下方抛物线上的一动点,过点P x 轴的平行线交AB于点C,过点P y 轴的平行线交 x 轴于点D,求 P C + P D 的最大值及此时点P的坐标;

(3)在(2)中 P C + P D 取得最大值的条件下,将该抛物线沿水平方向向左平移5个单位,点E为点P的对应点,平移后的抛物线与 y 轴交于点FM为平移后的抛物线的对称轴上一点.在平移后的抛物线上确定一点N,使得以点EFMN为顶点的四边形是平行四边形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.

科目 数学   题型 解答题   难度 较难
登录免费查看答案和解析
相关试题

在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是_
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率(用树状图或列表法求解).

如图,在平行四边形ABCD中,上两点,且
求证:(1)
(2)四边形是矩形.

(1)解方程:
(2)解不等式组:

计算:
(1)
(2)

如图①,已知二次函数的解析式是y=ax2+bx(a>0),顶点为A(1,-1).
(1)a=
(2)若点P在对称轴右侧的二次函数图像上运动,连结OP,交对称轴于点B,点B关于顶点A的对称点为C,连接PC、OC,求证:∠PCB=∠OCB;
(3)如图②,将抛物线沿直线y=-x作n次平移(n为正整数,n≤12),顶点分别为A1,A2,…,An,横坐标依次为1,2,…,n,各抛物线的对称轴与x轴的交点分别为D1,D2,…,Dn,以线段AnDn为边向右作正方形AnDnEnFn,是否存在点Fn恰好落在其中的一个抛物线上,若存在,求出所有满足条件的正方形边长;若不存在,请说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号