某厂为比较甲乙两种工艺对橡胶产品伸缩率的处理效应,进行 次配对试验,每次配对试验选用材质相同的两个橡胶产品,随机地选其中一个用甲工艺处理,另一个用乙工艺处理,测量处理后的橡胶产品的伸缩率,甲、乙两种工艺处理后的橡胶产品的伸缩率分别记为 , .试验结果如下:
试验序号 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
伸缩率 |
545 |
533 |
551 |
522 |
575 |
544 |
541 |
568 |
596 |
548 |
伸缩率 |
536 |
527 |
543 |
530 |
560 |
533 |
522 |
550 |
576 |
536 |
记 ,记 的样本平均数为 ,样本方差为 .
(1)求 , ;
(2)判断甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率是否有显著提高.(如果 ,则认为甲工艺处理后的橡胶产品的伸缩率较乙工艺处理后的橡胶产品的伸缩率有显著提高,否则不认为有显著提高)
如图所示,在四棱锥P-ABCD中,底面ABCD为平行四边形,∠ADC=45°,AD=AC=1,O为AC的中点,PO⊥平面ABCD,PO=2,M为PD的中点.
(1)证明:PB∥平面ACM;
(2)证明:AD⊥平面PAC.
(1)求与直线垂直,且与原点的距离为6的直线方程;
(2)求经过直线:
与
:
的交点,且平行于直线
的直线方程.
某校学生研究性学习小组发现,学生上课的注意力指标随着听课时间的变化而变化,老师讲课开始时,学生的兴趣激增;接下来学生的兴趣将保持较理想的状态一段时间,随后学生的注意力开始分散.设f(t)表示学生注意力指标,该小组发现f(t)随时间t(分钟)的变化规律(f(t)越大,表明学生的注意力越集中)如下:(a>0,且a≠1)
若上课后第5分钟时的注意力指标为140,回答下列问题:
(Ⅰ)求a的值;
(Ⅱ)上课后第5分钟时和下课前5分钟时比较,哪个时间注意力更集中?
(Ⅲ)在一节课中,学生的注意力指标至少达到140的时间能保持多长?
已知函数.
(Ⅰ)求证:不论a为何实数f(x)在(﹣∞,+∞)上为增函数;
(Ⅱ)若f(x)为奇函数,求a的值;
(Ⅲ)在(Ⅱ)的条件下,求f(x)在区间[1,5)上的最小值.
已知是定义在
内的增函数,且满足
.
(Ⅰ)求;
(Ⅱ)求不等式的解集.