游客
题文

阅读下列材料,然后解答问题.
经过正四边形(即正方形)各顶点的圆叫做这个正四边形的外接圆,圆心是正四边形的对称中心,这个正四边形叫做这个圆的内接正四边形.
如图,正方形ABCD内接于⊙O,⊙O的面积为S1,正方形ABCD的面积为S2.以圆心O为顶点作∠MON,使∠MON=90°.将∠MON绕点O旋转,OM、ON分别与⊙O交于点E、F,分别与正方形ABCD的边交于点G、H.设由OE、OF、及正方形ABCD的边围成的图形(阴影部分)的面积为S.
(1)当OM经过点A时(如图①),则S、S1、S2之间的关系为:            (用含S1、S2的代数式表示);
(2)当OM⊥AB于G时(如图②),则(1)中的结论仍然成立吗?请说明理由;
(3)当旋转到任意位置时(如图③),则(1)中的结论仍然成立吗?请说明理由;

科目 数学   题型 解答题   难度 较难
知识点: 圆幂定理 圆内接四边形的性质 对称式和轮换对称式
登录免费查看答案和解析
相关试题

如图,在梯形中,,.点,,分别在边,,上,

(1)求证:四边形是平行四边形;
(2)当时,求证:四边形是矩形.

已知二次函数

(1)证明:不论取何值,该函数图象与轴总有两个公共点;
(2)若该函数的图象与轴交于点(0,5),求出顶点坐标,并画出该函数图象.

解下列一元二次方程:
(1)
(2)

化简:≥0,≥0)

如图所示,在平面直角坐标系中,Rt△OBC的两条直角边分别落在x轴、y轴上,且OB=1,OC=3,将△OBC绕原点O顺时针旋转90°得到△OAE,将△OBC沿y轴翻折得到△ODC,AE与CD交于点F.

(1)若抛物线过点A、B、C, 求此抛物线的解析式;
(2)求△OAE与△ODC重叠的部分四边形ODFE的面积;
(3)点M是第三象限内抛物线上的一动点,点M在何处时△AMC的面积最大?最大面积是多少?求出此时点的坐标.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号