已知、两地之间有一条270千米的公路,甲、乙两车同时出发,甲车以60千米时的速度沿此公路从地匀速开往地,乙车从地沿此公路匀速开往地,两车分别到达目的地后停止.甲、乙两车相距的路程(千米)与甲车的行驶时间(时之间的函数关系如图所示.
(1)乙车的速度为 千米时, , .
(2)求甲、乙两车相遇后与之间的函数关系式.
(3)当甲车到达距地70千米处时,求甲、乙两车之间的路程.
小颖和小红两位同学在学习“概率”时,做投掷骰子(质地均匀的正方体)实验,他们共做了60次实验,实验的结果如下:
(1)计算“3点朝上”的频率和“5点朝上”的频率;
(2)小颖说:“根据上述实验,一次实验中出现5点朝上的概率最大”;小红说:“如果投掷600次,那么出现6点朝上的次数正好是100次”,小颖和小红的说法正确吗?为什么?
朝上的点数 |
1 |
2 |
3 |
4 |
5 |
6 |
出现的次数 |
7 |
9 |
6 |
8 |
20 |
10 |
如图,在直角坐标系中,A(0,4),C(3,0).
(1)①画出线段AC关于y轴对称线段AB;
②将线段CA绕点C顺时针旋转一个角,得到对应线段CD,使得AD∥x轴,请画出线段CD;
(2)若直线y=kx平分(1)中四边形ABCD的面积,请直接写出实数k的值.
化简求值:(1),其中a=-
,b=1
(2),其中
满足
.
计算:
(1)
(2)
如图①,在□ABCD中,AB=13,BC=50,点P从点B出发,沿B—A—D—A运动.已知沿B—A运动时的速度为每秒13个单位长度,沿A—D—A运动时的速度为每秒8个单位长度.点Q从点 B出发沿BC方向运动,速度为每秒5个单位长度. 若P、Q两点同时出发,当点Q到达点C时,P、Q两点同时停止运动.设点P的运动时间为t(秒).连结PQ.
(1)当点P沿A—D—A运动时,求AP的长(用含t的代数式表示).
(2)过点Q作QR//AB,交AD于点R,连结BR,如图②.在点P沿B—A—D运动过程中,是否存在线段PQ扫过的图形(阴影部分)被线段BR分成面积相等的两部分的情况,若存在,求出所有t的值,若不存在,请说明理由.
(3)设点C.D关于直线PQ的对称点分别为、
,在点P沿B—A—D运动过程中, 当
//BC时,求t的值(直接写出结果).