设进入某商场的每一位顾客购买甲种商品的概率为 ,购买乙种商品的概率为 ,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的。
(Ⅰ)求进入商场的1位顾客购买甲、乙两种商品中的一种的概率;
(Ⅱ)求进入商场的3位顾客中至少有2位顾客既未购买甲种也未购买乙种商品的概率。
如图,在直三棱柱 中, 分别为 的中点,点 在侧棱 上, 且
求证:(1)直线 平面 ;
(2) 平面 平面 ;

(1) 求 的长;
;
已知函数 =│ x+1│-│ x-2│.
(1)求不等式 ≥1的解集;
(2)若不等式 ≥ x 2- x+ m的解集非空,求实数 m的取值范围.
在直角坐标系xOy中,直线l1的参数方程为 (t为参数),直线l2的参数方程为 .设l1与l2的交点为P,当k变化时,P的轨迹为曲线C.
(1)写出C的普通方程;
(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设 ,M为l3与C的交点,求M的极径.
已知函数 .
(1)若 ,求a的值;
(2)设m为整数,且对于任意正整数n, ,求m的最小值.