(本小题满分14分)已知数列的前
项和
和通项
满足
(
是常数且
)。(Ⅰ)求数列
的通项公式;(Ⅱ) 当
时,试证明
;
(Ⅲ)设函数,
,是否存在正整数
,使
对
都成立?若存在,求出
的值;若不存在,请说明理由.
是半径为
的半圆,
为直径,点
为
的中点,点
和点
为线段
的三等分点,平面
外一点
满足
平面
,
.
(1)证明:
;
(2)求点
到平面
的距离.
某电视台在一次对收看文艺节目和新闻节目观众的抽样调查中,随机抽取了100名电视观众,相关的数据如下表所示:
(1)由表中数据直观分析,收看新闻节目的观众是否与年龄有关?
(2)用分层抽样方法在收看新闻节目的观众中随机抽取5名,大于40岁的观众应该抽取几名?
(3)在上述抽取的5名观众中任取2名,求恰有1名观众的年龄为20至40岁的概率.
设函数
,且以
为最小正周期.
(1)求
;
(2)求
的解析式;
(3)已知
,求
的值.
已知函数
.
(Ⅰ)若曲线
与曲线
相交,且在交点处有相同的切线,求
的值及该切线的方程;
(Ⅱ)设函数
,当
存在最小值时,求其最小值
的解析式;
(Ⅲ)对(Ⅱ)中的
,证明:当
时,
.
如图,椭圆
的顶点为
,焦点为
,
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)设
为过原点的直线,
是与
垂直相交于
点,与椭圆相交于
两点的直线,
.是否存在上述直线
使
成立?若存在,求出直线
的方程;并说出;若不存在,请说明理由.