(本小题满分12分)
如图,平面
平面ABCD,
ABCD为正方形,
是直角三角形,
且
,E、F、G分别是
线段PA,PD,CD的中点.
(1)求证:
∥面EFC;
(2)求异面直线EG与BD所成的角;
(3)在线段CD上是否存在一点Q,
使得点A到面EFQ的距离为0.8. 若存在,
求出CQ的值;若不存在,请说明理由.
已知函数
,其中
为常数.
(Ⅰ)若函数
是区间
上的增函数,求实数
的取值范围;
(Ⅱ)若
在
时恒成立,求实数
的取值范围.
如图,在四棱锥
中,底面
是菱形,
,且侧面
平面
,点
是棱
的中点.
(Ⅰ)求证:
平面
;
(Ⅱ)求证:
;
(Ⅲ)若
,求证:平面
平面
.
根据以往的成绩记录,甲、乙两名队员射击击中目标靶的环数的频率分布情况如图所示
(Ⅰ)求上图中
的值;
(Ⅱ)甲队员进行一次射击,求命中环数大于7环的概率(频率当作概率使用);
(Ⅲ)由上图判断甲、乙两名队员中,哪一名队员的射击成绩更稳定(结论不需证明).
函数
.
(Ⅰ)求
的值;
(Ⅱ)求函数
的最小正周期及其图象的所有对称轴的方程.
若函数
满足:集合
中至少存在三个不同的数构成等比数列,则称函数
是等比源函数.
(Ⅰ)判断下列函数:①
;②
;③
中,哪些是等比源函数?(不需证明)
(Ⅱ)判断函数
是否为等比源函数,并证明你的结论;
(Ⅲ)证明:
,函数
都是等比源函数.