(本小题满分12分)
(理)已知Sn是正数数列{an}的前n项和,S12,S22、……、Sn2 ……,是以3为首项,以1为公差的等差数列;数列{bn}为无穷等比数列,其前四项之和为120,第二项与第四项之和为90.
(I)求an、bn;(II)从数列{}中能否挑出唯一的无穷等比数列,使它的各项和等于
.若能的话,请写出这个数列的第一项和公比?若不能的话,请说明理由.
已知复数满足:
(1)求
并求其在复平面上对应的点的坐标;(2)求
的共轭复数
在平面直角坐标系中,以坐标原点为几点,
轴的正半轴为极轴建立极坐标系.已知直线
上两点
的极坐标分别为
,圆
的参数方程
(
为参数).
(Ⅰ)设为线段
的中点,求直线
的平面直角坐标方程;
(Ⅱ)判断直线与圆
的位置关系.
用反证法证明:如果,那么
。
已知:
通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.
已知,直线
,
为平面上的动点,过点
作
的垂线,垂足为点
,且
.
(Ⅰ)求动点的轨迹曲线
的方程;
(Ⅱ)设动直线与曲线
相切于点
,且与直线
相交于点
,试问:在
轴上是否存在一个定点
,使得以
为直径的圆恒过此定点
?若存在,求出定点
的坐标;若不存在,说明理由.