(本小题满分10分)如图A,B两点之间有6条网线并联,它们能通过的最大信息量分别为1,1,2,2,3,4.现从中任取三条网线且使每条网线通过最大的信息量.
(1)设选取的三条网线由A到B可通过的信息
总量为时,则保证信息畅通.
求线路信息畅通的概率;
(2)求选取的三条网线可通过信息总量的数学期望.
如图,过抛物线的对称轴上任一点
作直线与抛物线交于
两点,点
是点
关于原点的对称点.
(1) 设点分有向线段
所成的比为
,证明:
;
(2) 设直线的方程是
,过
两点的圆
与抛物线在点
处有共同的切线,求圆
的方程.
已知三角形ABC的三个顶点均在椭圆上,且点A是椭圆短轴的一个端点(点A在y轴正半轴上).
(1)若三角形ABC的重心是椭圆的右焦点,试求直线BC的方程;若角A为,AD垂直BC于D,试求点D的轨迹方程.
如图,椭圆的中心在原点,长轴AA1在x轴上.以A、A1为焦点的双曲线交椭圆于C、D、D1、C1四点,且|CD|=|AA1|.椭圆的一条弦AC交双曲线于E,设
,当
时,求双曲线的离心率e的取值范围.
设,
为直角坐标平面内x轴.y轴正方向上的单位向量,若
,且
(Ⅰ)求动点M(x,y)的轨迹C的方程;
(Ⅱ)设曲线C上两点A.B,满足(1)直线AB过点(0,3),(2)若,则OAPB为矩形,试求AB方程.
在直角坐标平面中,的两个顶点
的坐标分别为
,
,平面内两点
同时满足下列条件:
①;②
;③
∥
(1)求的顶点
的轨迹方程;
(2)过点的直线
与(1)中轨迹交于
两点,求
的取值范围