某果园要将一批水果用汽车从所在城市甲运至销售商所在城市乙。已知从城市甲到城市乙只有两条公路,且运费由果园承担。若果园恰能在约定日期(×月×日)将水果送到,则销售商一次性支付给果园20万元;若在约定日期前送到,每提前一天销售商将多支付给果园1万元。若在约定日期后运到,每迟到一天销售商将少支付给果园l万元。为保证水果新鲜度,汽车只能在约定日期的前两天出发,且只能选择其中的一条公路运送水果。已知下表内的信息:
统计信息 汽车行驶路线 |
不堵车的情况下到达 城市乙所需时间(天) |
堵车的情况下到达 城市乙所需时间(天) |
堵车的 概率 |
运费 (万元) |
公路1 |
2 |
3 |
![]() |
1.6 |
公路2 |
1 |
4 |
![]() |
0.8 |
(1)记汽车走公路1时果园获得的毛利润为(单位:万元),求
的分布列和数学期望
;
(2)假设你是果园的决策者,你选择哪条公路运送水果有可能让果园获得的毛利润更多?
|
注:毛利润=销售商支付给果园的费用-运费
(本小题满分12分)
已知函数,若
对一切
恒成立.求实数
的取值范围.(16分)
(本小题满分12分)
已知甲、乙两个工厂在今年的1月份的利润都是6万,且乙厂在2月份的利润是8万元.若甲、乙两个工厂的利润(万元)与月份x之间的函数关系式分别符合下列函数模型:f(x)=a1x2—4x+6,g(x)=a2+b2(a1,a2,b2∈R).
(1)求函数f(x)与g(x)的解析式;
(2)求甲、乙两个工厂今年5月份的利润;
(3)在同一直角坐标系下画出函数f(x)与g(x)的草图,并根据草图比较今年1—10月份甲、乙两个工厂的利润的大小情况.
(本小题满分12分)
设,若方程
有两个均小于2的不同的实数根,则此时关于
的不等式
是否对一切实数
都成立?并说明理由。
(本小题满分12分)
已知函数的最小正周期为
,最小值为
,图象过点
,(1)求
的解析式;(2)求满足
且
的
的集合.
(本小题满分12分)
已知函数,
(1)当时,求
的最大值和最小值
(2)若在
上是单调函数,且
,求
的取值范围