已知函数.(1)求函数
的单调区间;
(2)设函数.若至少存在一个
,使得
成立,求实数
的取值范围.
(满分12分)
已知函数f ( x )=x 2+ax+b
(1)若f (x)在[ 1,+∞)内递增,求实数a的范围。
(2)若对任意的实数x都有f (1+x)="f" (1-x) 成立,
①求实数 a的值;
②证明函数f(x)在区间[1,+∞上是增函数.
(满分12分)[设函数的定义域为M,
函数的定义域为N.
(1)求集合M;
(2)若,求实数k的取值范围.
(满分12分)
已知命题P:函数
命题q:方程无实根。
若p或q为真,p且q为假,求实数m的取值范围
(本小题满分13分)
设函数
(1)当曲线
处的切线斜率
(2)求函数的单调区间与极值;
(3)已知函数有三个互不相同的零点0,
,且
。若对任意的
,
恒成立,求m的取值范围。
设分别是椭圆C:
的左右焦点,
(1)设椭圆C上的点到
两点距离之和等于4,写出椭圆C的方程和焦点坐标。
(2)设K是(1)中所得椭圆上的动点,求线段的中点B的轨迹方程。
(3)设点P是椭圆C 上的任意一点,过原点的直线L与椭圆相交于M,N两点,当直线PM ,PN的斜率都存在,并记为
试探究
的值是否与点P及直线L有关,并证明你的结论。