(本大题满分14分)
已知中心在原点,顶点A1、A2在x轴上,其渐近线方程是,双曲线过点
(1)求双曲线方程
(2)动直线经过
的重心G,与双曲线交于不同的两点M、N,问:是否存在直线
,使G平分线段MN,证明你的结论
甲、乙两人参加2010年广州亚运会青年志愿者的选拔.打算采用现场答题的方式来进行,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题.规定每次考试都从备选题中随机抽出3题进行测试,至少答对2题才能入选.
(1)求甲答对试题数ξ的概率分布;
(2)求甲、乙两人至少有一人入选的概率.
一条生产线上生产的产品按质量情况分为三类:A类、B类、C类.检验员定时从该生产线上任取2件产品进行一次抽检,若发现其中含有C类产品或2件都是B类产品,就需要调整设备,否则不需要调整.已知该生产线上生产的每件产品为A类品,B类品和C类品的概率分别为0.9,0.05和0.05,且各件产品的质量情况互不影响.
(1)求在一次抽检后,设备不需要调整的概率;
(2)若检验员一天抽检3次,以ξ表示一天中需要调整设备的次数,求ξ的分布列.
甲、乙两位学生参加数学竞赛培训,现分别从他们在培训期间参加的若干次预赛成绩中随机抽取8次,记录如下:
甲 |
82 |
81 |
79 |
78 |
95 |
88 |
93 |
84 |
乙 |
92 |
95 |
80 |
75 |
83 |
80 |
90 |
85 |
(1)用茎叶图表示这两组数据;
(2)现要从中选派一人参加数学竞赛,从统计学的角度考虑,你认为选派哪位学生参加合适?请说明理由;
(3)(理)若将频率视为概率,对甲同学在今后的3次数学竞赛成绩进行预测,记这3次成绩中高于80分的次数为ξ,求ξ的分布列及数学期望Eξ.
为了了解初三学生女生身高情况,某中学对初三女生身高进行了一次测量,所得数据整理后列出了频率分布表如下:
组别 |
频数 |
频率 |
145.5~149.5 |
1 |
0.02 |
149.5~153.5 |
4 |
0.08 |
153.5~157.5 |
20 |
0.40 |
157.5~161.5 |
15 |
0.30 |
161.5~165.5 |
8 |
0.16 |
165.5~169.5 |
m |
n |
合 计 |
M |
N |
(1)求出表中m,n,M,N所表示的数分别是多少?
(2)画出频率分布直方图
(3)全体女生中身高在哪组范围内的人数最多?
一个总体中的1000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9,要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.
(1)当x=24时,写出所抽取样本的10个号码;
(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.