(本大题满分18分)本大题共有3个小题,第1小题满分4分,第2小题满6分,第3小题满8分.已知集合具有性质:对任意,与至少一个属于.(1)分别判断集合与是否具有性质,并说明理由;(2)①求证:;②求证:;(3)研究当和时,集合中的数列是否一定成等差数列.
已知向量,. (1)当,且时,求的值; (2)当,且∥时,求的值.
已知,,=,=,求的值
已知,则
已知, 且,求证:
(本小题满分10分) 已知圆O:,圆C:,由两圆外一点引两圆切线PA、PB,切点分别为A、B,满足|PA|=|PB|. (Ⅰ)求实数a、b间满足的等量关系; (Ⅱ)求切线长|PA|的最小值; (Ⅲ)是否存在以P为圆心的圆,使它与圆O相内切并且与圆C相外切?若存在,求出圆P的方程;若不存在,说明理由.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号