已知数列{an}的前n项和为Sn, 且满足a1 = 2, nan + 1 = Sn + n(n + 1).(Ⅰ)求数列{an}的通项公式an;(Ⅱ)设Tn为数列}的前n项和, 求Tn;(Ⅲ)设, 证明:
(本小题满分12分)设数列的前n项和为Sn=2n2,为等比数列,且(Ⅰ)求数列和的通项公式; (Ⅱ)设,求数列的前n项和Tn.
(本小题满分12分)已知定义在区间(-1,1)上的函数为奇函数。且.(1)求实数的值。 (2)求证:函数(-1,1)上是增函数。 (3)解关于。
(本小题共12分)已知为等差数列,且,。(Ⅰ)求的通项公式;(Ⅱ)若等比数列满足,,求的前n项和公式
(本小题满分10分)设全集 , 有实数根 求。
二次函数
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号