一家化妆品公司于今年三八节期间在某社区举行了为期三天的“健康使用化妆品知识讲座”.每位社区居民可以在这三天中的任意一天参加任何一个讨论,也可以放弃任何一个讲座(规定:各个讲座达到预先设定的人数时称为满座).统计数据表明,各个讲座各天满座的概率如下表:
|
洗发水讲座 |
洗面奶讲座 |
护肤霜讲座 |
活颜营养讲座 |
面膜使用讲座 |
3月8日 |
![]() |
![]() |
![]() |
![]() |
![]() |
3月9日 |
![]() |
![]() |
![]() |
![]() |
![]() |
3月10日 |
![]() |
![]() |
![]() |
![]() |
![]() |
(1)求面膜使用讲座三天都不满座的概率;
(2)设3月9日各个讲座满座的数目为,求随机变量
的分布列和数学期望.
命题方程
有两个不等的正实数根,
命题方程
无实数根。若“
或
”为真命题,求
的取值范围
盒中有6只灯泡,其中有2只是次品,4只是正品.从中任取2只,试求下列事件的概率.
(1)取到的2只都是次品;
(2)取到的2只中恰有一只次品
某校高三文科分为四个班.高三数学调研测试后, 随机地在各班抽取部分学生进行测试成绩统计,各班被抽取的学生人数恰好成等差数列,人数最少的班被抽取了22人.抽取出来的所有学生的测试成绩统计结果的频率分布条形图如图所示,其中 120~130(包括120分但不包括130分)的频率为0.05,此分数段的人数为5人.
(1) 问各班被抽取的学生人数各为多少人?
(2) 在抽取的所有学生中,任取一名学生, 求分数不小于90分的概率.
(本小题满分14分)
已知函数.
(1)当时,讨论
的单调性;
(2)设当
时,若对任意
,存在
,使
恒成立,求实数
取值范围.
(本小题满分12分)
如图,某小区准备在一直角围墙ABC内的空地上植出一块“绿地ABD”,其中AB长为定值a,BD长可根据需要进行调节(BC足够长)。现规划在
ABD的内接正方形BGEF内种花,其余地方种草,且把种草的面积
与种花的面积
的比值
称为“草花比y”
(1)设,将y表示成
的函数关系式。
(2)当BE为多长时,y有最小值?最小值为多少?