某蔬菜基地种植番茄,由历年市场行情得知,从二月一日起的300天内,番茄市场售价与上市时间的关系用图(1)的一条折线表示;番茄的种植成本与上市时间的关系用图(2)的抛物线表示.
(1)写出图1表示的市场售价与时间的函数关系式P=f(t);图2表示的种植成本与时间的函数关系式Q=g(t);
(2)市场售价减去种植成本为纯收益,问何时上市的番茄纯收益最大?(注:市场售价和种植成本的单位:元/102,kg,时间单位:天)
如图,公园有一块边长为2的等边△ABC的边角地,现修成草坪, 图中DE把草坪分成面积相等的两部分,D在AB上,E在AC上.
(1)设
(x≥0),
,求用
表示
的函数关系式,并求函数的定义域;
(2).如果
是灌溉水管,为节约成本,希望它最短,
的位置应在哪里?如果
是参观线路,则希望它最长,
的位置又应在哪里?请予证明.
已知函数
(1)求函数的周期;
(2)求函数的单调递增区间;
(3)若
时,
的最小值为– 2 ,求a的值.
在
分别是角A、B、C的对边,
,且
.
(1)求角B的大小;
(2)求sin A+sin C的取值范围.
已知向量
=(3,-4),
=(6,-3),
=(5-m,-3-m).
(1)若点A,B,C不能构成三角形,求实数m满足的条件;
(2)若△ABC为直角三角形,求实数m的值.
(本小题满分12分)如图,椭圆
上的点M与椭圆右焦点
的连线
与x轴垂直,且OM(O是坐标原点)与椭圆长轴和短轴端点的连线AB平行.
(1)求椭圆的离心率;
(2)过
且与AB垂直的直线交椭圆于P、Q,若
的面积是
,求此时椭圆的方程.