已知:双曲线的顶点坐标(0,1),(0,-l),离心率,又抛物线
的焦点与双曲线一个焦点重合.
(1)求抛物线的方程;
(2)已知是
轴上的两点,过
做直线与抛物线
交于
两点,试证:直线
与
轴所成的锐角相等.
(3)在(2)的前提下,若直线的斜率为1,问
的面积是否有最大值?若有,求出最大值.若没有,说明理由.
已知点A、B、C的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),
α∈(,
).
(1)若||=|
|,求角α的值;
(2)若·
=-1,求
的值.
已知=
,
=
,
=
,设
是直线
上一点,
是坐标原点.
⑴求使取最小值时的
; ⑵对(1)中的点
,求
的余弦值.
已知函数y=cos2x+
sinxcosx+1,x∈R.
(1)求函数的最小正周期;
(2)求函数的单调减区间.
在数列中,
,其中
,对任意
都有:
;(1)求数列
的第2项和第3项;
(2)求数列的通项公式
,假设
,试求数列
的前
项和
;
(3)若对一切
恒成立,求
的取值范围。
已知数列中,
,
,数列
中,
,且点
在直线
上。
(1)求数列的通项公式;
(2)求数列的前
项和
;
(3)若,求数列
的前
项和
;