某厂家拟在2011年举行促销活动,经调查测算,该产品的年销售量(即该厂的年产量)x万件与年促销费用m万元()(k为常数),如果不搞促销活动,则该产品的年销售量只能是1万件。已知2008年生产该产品的固定投入为8万元,每生产1万件该产品需要再投入16万元,厂家将每件产品的销售价格定为每件产品年平均成本的1.5倍(产品成本包括固定投入和再投入两部分资金).
(1)将2011年该产品的利润y万元表示为年促销费用m万元的函数;
(2)该厂家2011年的促销费用投入多少万元时,厂家的利润最大?
(本小题满分14分)直三棱柱ABC- A1B1C1中,AB="A" A1 ,=
(Ⅰ)证明;
(Ⅱ)已知AB=2,BC=,求三棱锥
的体积.
空气质量指数PM2.5(单位:μg/m3)表示每立方米空气中可入肺颗粒物的含量,这个值越高,就代表空气污染越严重:
PM2.5日均浓度 |
0~35 |
35~75 |
75~115 |
115~150 |
150~250 |
>250 |
空气质量级别 |
一级 |
二级 |
三级 |
四级 |
五级 |
六级 |
空气质量类别 |
优 |
良 |
轻度污染 |
中度污染 |
重度污染 |
严重污染 |
某市2012年3月8日—4月7日(30天)对空气质量指数PM2.5进行监测,获得数据后整理得到如下条形图:
(1)估计该城市一个月内空气质量类别为良的概率;
(2)从空气质量级别为三级和四级的数据中任取2个,求至少有1天空气质量类别为中度污染的概率。
(本小题满分12分)已知函数.
(Ⅰ)求函数的最小正周期和值域;
(Ⅱ)若为第二象限角,且
,求
的值.
选修4-1:几何证明选讲
如图,在正中,点
,
分别在边
上,且
,
相交于点
,
求证:(1) 四点共圆;(2)
.
(本小题满分12分)如图,已知椭圆的长轴为
,过点
的直线
与
轴垂直,直线
所经过的定点恰好是椭圆的一个顶点,且椭圆的离心率
(1)求椭圆的标准方程;
(2)设是椭圆上异于
、
的任意一点,
轴,
为垂足,延长
到点
使得
,连接
并延长交直线
于点
,
为
的中点.试判断直线
与以
为直径的圆
的位置关系.