(本小题满分14分)
已知等比数列的前
项和为
(Ⅰ)求数列的通项公式;
(Ⅱ)设数列满足
,
为数列
的前
项和,试比较
与
的大小,并证明你的结论.
已知二次函数满足
,且
,
(1)求;
(2)求在
上的最大值和最小值。
设函数
(1)将f(x)写成分段函数,在给定坐标系中作出函数的图像;
(2)解不等式f(x)>5,并求出函数y= f(x)的最小值。
⊙O1和⊙O2的极坐标方程分别为。
(1)把⊙O1和⊙O2的极坐标方程化为直角坐标方程;
(2)求经过⊙O1,⊙O2交点的直线的直角坐标方程。
已知f(x)=2x3+ax2+bx+c在x=-1处取得极值8,又x=2时,f(x) 也取得极值。
(1)求a,b,c的值,写出f(x)的解析式;
(2)求f(x)的单调区间。
已知c>0.设命题P:函数y=cx在R上单调递减;Q: 函数在
上恒为增函数.若P或Q为真,P且Q为假,求c的取值范围。