某连锁分店销售某种商品,每件商品的成本为4元,并且每件商品需向总店交a元(1≤a≤3)的管理费,预计当每件商品的售价为元(8≤x≤9)时,一年的销售量为(10-x)2万件.(1)求该连锁分店一年的利润L(万元)与每件商品的售价x的函数关系式L(x)(销售一件商品获得的利润l=x-(a+4));(2)当每件商品的售价为多少元时,该连锁分店一年的利润L最大,并求出L的最大值M(a).
求由抛物线与它在点和点的切线所围成的区域的面积。
在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起(如图),做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?
已知函数 ⑴若为的极值点,求的值; ⑵若的图象在点处的切线方程为,求在区间上的最大值; ⑶当时,若在区间上不单调,求的取值范围.
设二次函数满足(+2)=(2-),且方程的两实根的平方和为10,的图象过点(0,3), ⑴求()的解析式. ⑵求在上的值域。
已知函数(a>1). (1)判断函数f (x)的奇偶性; (2)求f (x)的值域; (3)证明f (x)在(-∞,+∞)上是增函数.
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号