(本小题满分14分)
已知数列的前
项和为
,对一切正整数
,点
都在函数
的图象上,且在点
处的切线的斜率为
.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列
的前
项和
;
(Ⅲ)设,
,等差数列
的任一项
,其中
是
中最小的数,
,求数列
的通项公式.
(本小题满分16分)
高已知数列的前
项和为
,且满足
,
,其中常数
.
(1)证明:数列为等比数列;
(2)若,求数列
的通项公式;
(3)对于(2)中数列,若数列
满足
(
),在
与
之间插入
(
)个2,得到一个新的数列
,试问:是否存在正整数m,使得数列
的前m项的和
?如果存在,求出m的值;如果不存在,说明理由.
(本小题满分16分)
如图,椭圆过点
,其左、右焦点分别为
,离心率
,
是椭圆右准线上的两个动点,且
.
(1)求椭圆的方程;
(2)求的最小值;
(3)以为直径的圆
是否过定点?
请证明你的结论.
(本小题满分14分)
据环保部门测定,某处的污染指数与附近污染源的强度成正比,与到污染源距离的平方成反比,比例常数为.现已知相距18
的A,B两家化工厂(污染源)的污染强度分别
为
,它们连线上任意一点C处的污染指数
等于两化工厂对该处的污染指数之和.设
(
).
(1)试将表示为
的函数;
(2)若,且
时,
取得最小值,试求
的值.
(本小题满分14分)
如图,在四棱锥中,底面
为矩形,平面
⊥平面
,
,
,
为
的中点,
求证:
(1)∥平面
;
(2)平面平面
.
(本小题满分14分)
已知函数.
(1)求的值;
(2)求的最大值及相应
的值.