在正四面体中,点
在
上,点
在
上,且
.
证明:(1)平面
;
(2)直线直线
.
已知函数(
,
).
(1)若,求函数
的单调增函数;
(2)若时,函数
的最大值为
,最小值为
,求
,
的值.
将圆x2+y2=1上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线l:2x+y-2=0与C的交点为P1,P2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,求过线段P1P2的中点且与l垂直的直线的极坐标方程.
已知函数(
为实常数) .
(1)求的单调区间;
(2)当时,讨论方程
根的个数.
(3)若,且对任意的
,都有
,求实数a的取值范围.
已知椭圆C的离心率为,直线
被以椭圆的短轴为直径的圆截得弦长为
,抛物线
以原点为顶点,椭圆的右焦点为焦点.
(Ⅰ)求椭圆与抛物线
的方程;
(Ⅱ)已知,
是椭圆
上两个不同点,且
⊥
,判定原点
到直线
的距离是否为定值,若为定值求出定值,否则,说明理由.