已知椭圆C的离心率为,直线
被以椭圆的短轴为直径的圆截得弦长为
,抛物线
以原点为顶点,椭圆的右焦点为焦点.
(Ⅰ)求椭圆与抛物线
的方程;
(Ⅱ)已知,
是椭圆
上两个不同点,且
⊥
,判定原点
到直线
的距离是否为定值,若为定值求出定值,否则,说明理由.
求函数的定义域:
已知函数,当
时f(x)>0,
时f(x)<0
(1)求y=f(x)的解析式;
(2)c为何值时,不等式的解集为R.
经市场调查,某种商品在过去50天的销售和价格均为销售时间t(天)的函数,且销售量近似地满足f (t) =" –" 2t + 200(1 ≤ t ≤ 50 , t ∈ N ),前30天价格为g (t) = t + 30 (1 ≤ t ≤ 30 , t ∈ N ),后20天价格为g (t) =" 45" (31 ≤ t ≤ 50 , t ∈ N ).
(1)写出该种商品的日销售S与时间t的函数关系;
(2)求日销售S的最大值.
佛山某公司生产陶瓷,根据历年的情况可知,生产陶瓷每天的固定成本为14000元,每生产一件产品,成本增加210元.已知该产品的日销售量与产量
之间的关系式为
,每件产品的售价
与产量
之间的关系式为
.
(Ⅰ)写出该陶瓷厂的日销售利润与产量
之间的关系式;
(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润.