(本小题满分12分)
如图,在四棱台ABCD—A1B1C1D1中,下底ABCD是边长为2的正方形,上底A1B1C1D1是边长为1的正方形,侧棱DD1⊥平面ABCD,DD1=2.
(1)求证:B1B//平面D1AC;
(2)求二面角B1—AD1—C的余弦值.
(本小题满分12分)某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,
优秀 |
非优秀 |
合计 |
|
甲班 |
![]() |
![]() |
![]() |
乙班 |
![]() |
![]() |
![]() |
合计 |
![]() |
![]() |
![]() |
(1)根据列联表的数据,若按99.9%的可靠性要求,能否认为“成绩与班级有关系”;
(2)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.
参考公式与临界值表:.
![]() |
0.100 |
0.050 |
0.025 |
0.010 |
0.001 |
![]() |
2.706 |
3.841 |
5.024 |
6.635 |
10.828 |
(本小题满分12分)设是锐角三角形,
分别是内角
所对边长,并且
.
(1)求角A的大小;
(2) 若,
,
为
的中点,求
的长.
(本小题满分10分)选修4—5:不等式选讲
设函数.
(1)当时,解不等式
;
(2)若的解集为
,
,求证:
.
(本小题满分10分)选修4—4:坐标系与参数方程
已知曲线的极坐标方程是
.以极点为平面直角坐标系的原点,极轴为
轴的正半轴,建立平面直角坐标系,直线
的参数方程是
是参数
.
(1)将曲线的极坐标方程化为直角坐标方程;
(2)若直线与曲线
相交于
、
两点,且
,求直线的倾斜角
的值.
(本小题满分10分)选修4—1:几何证明选讲
如图,内接于直径为
的圆
,过点
作圆
的切线交
的延长线于点
,
的平分线分别交
和圆
于点
,若
.
(1)求证:;
(2)求的值.