平面直角坐标系中,为坐标原点,给定两点
,点
满足
,其中
,且
. (1)求点
的轨迹方程;(2)设点
的轨迹与双曲线
交于
两点,且以
为直径的圆过原点,求证:
为定值;(3)在(2)的条件下,若双曲线的离心率不大于
,求双曲线实轴长的取值范围.
如图所示,在矩形ABCD中,AB=a,BC=a,以对角线AC为折线将直角三角形ABC向上翻折到三角形APC的位置(B点与P点重合),P点在平面ACD上的射影恰好落在边AD上的H处.
(1)求证:PA⊥CD;
(2)求直线PC与平面ACD所成角的正切值.
己知各项均不相等的等差数列{an}的前四项和S4=14,且a1,a3,a7成等比数列.
(1)求数列{an}的通项公式;
(2)设Tn为数列的前n项和,若Tn≤
¨对
恒成立,求实数
的最小值.
己知函数在
处取最小值.
(1)求的值。
(2)在△ABC中,a、b、c分别是A、B、C的对边,已知a=l,b=,
,求角C.
已知函数y="Asin(ωx+φ)" (A>0,ω>0,|φ|<π)的 一段图象如图所示
(1)求函数的解析式;
(2)求这个函数的单调增区间。
已知
(1)设,求
的最大值与最小值;
(2)求的最大值与最小值;