(本小题满分13分)已知数列满足
(Ⅰ)求;(Ⅱ)已知存在实数
,使
为公差为
的等差数列,求
的值;
(Ⅲ)记,数列
的前
项和为
,求证:
.
将圆按向量
平移得到圆
,直线
与圆
相交于
、
两点,若在圆
上存在点
,使
.求直线
的方程.
高三年级有500名学生,为了了解数学学科的学习情况,现从中随机抽出若干名学生在一次测试中的数学成绩,制成如下频率分布表:
(1)根据上面图表,①②③④处的数值分别为多少?
(2)根据题中信息估计总体平均数是多少?
(3)估计总体落在[129,150]中的概率.
分组 |
频数 |
频率 |
![]() |
① |
② |
![]() |
0.050 |
|
![]() |
0.200 |
|
![]() |
12 |
0.300 |
![]() |
0.275 |
|
![]() |
4 |
③ |
[145,155] |
0.050 |
|
合计 |
④ |
一个多面体的直观图和三视图如图所示,其中M、N分别是AB、AC的中点,G是DF上的一动点.
(1)求证:
(2)当FG=GD时,在棱AD上确定一点P,使得GP//平面FMC,并给出证明.
已知各项均为正数的数列满足
其中n=1,2,3,….
(1)求的值;
(2)求证:;
(3)求证:.
已知:矩形的两条对角线相交于点
,
边所在直线的方程为:
,点
在
边所在直线上。
(1)求矩形外接圆
的方程。
(2)是
的内接三角形,其重心
的坐标是
,求直线
的方程 .