如图,已知四棱锥中,
⊥平面
,
是直角梯形,
,
90º,
.
(1)求证:⊥
;
(2)在线段上是否存在一点
,使
//平面
,
若存在,指出点的位置并加以证明;若不存在,请说明理由.
(本小题满分12分)在锐角三角形ABC中,已知内角A、B、C所对的边分别为a、b、c,且且
,
(1)求A、B、C的大小;
(2)若向量的值。
(本小题满分12分)已知直线l:2mx-y-8m-3=0和
圆C:(x-3)2+(y+6)2=25.
(1)证明:不论m取什么实数,直线l与圆C总相交;
(2)求直线l被圆C截得的线段的最短长度以及此时直线l的方程.
(本小题满分10分)已知直线l的方程为3x+4y-12="0," 求直线m的方程, 使得:
(1)m与l平行, 且过点(-1,3) ;
(2) m与l垂直, 且m与两轴围成的三角形面积为4.
(本小题满分12分)已知甲、乙、丙三种食物的维生素A、B含量及成本如下表,若用甲、乙、丙三种食物各x千克,y千克,z千克配成100千克混合食物,并使混合食物内至少含有56000单位维生素A和63000单位维生素B.
甲 |
乙 |
丙 |
|
维生素A(单位/千克) |
600 |
700 |
400 |
维生素B(单位/千克) |
800 |
400 |
500 |
成本(元/千克) |
11 |
9 |
4 |
(Ⅰ)用x,y表示混合食物成本c元;
(Ⅱ)确定x,y,z的值,使成本最低.
(本小题满分12分)已知各项均为正数的数列中,
是数列
的前
项和,对任意
,有
.函数
,数列
的首项
.
(Ⅰ)求数列的通项公式;
(Ⅱ)令求证:
是等比数列并求
通项公式;
(Ⅲ)令,
,求数列
的前n项和
.