已知y = f (x)是定义在[–1,1]上的奇函数,x∈[0,1]时,f (x) =.
(1)求x∈[–1,0)时,y = f (x)解析式,并求y = f (x)在[0,1]上的最大值.
(2)解不等式f (x)>.
(本小题满分10分)在锐角中,A、B、C三内角所对的边分别为a、b、c,
(1)若b=3,求c;
(2)求的面积的最大值。
定义在R上的增函数y=f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y).
(Ⅰ)求f(0)
(Ⅱ)求证f(x)为奇函数;
(Ⅲ)若f()+f(3
-9
-2)<0对任意x∈R恒成立,求实数k的取值范围.
设二次函数,已知不论
为何实数恒有
,
(1)求证:;
(2)求证:
;
(3)若函数的最大值为8,求
值.
已知集合,
.
若,求实数
的取值范围.
如图,某污水处理厂要在一个矩形污水处理池(ABCD)的池底水平铺设污水净化管道(Rt∆FHE,H是直角顶点)来处理污水,管道越长,污水净化效果越好.设计要求管道的接口H是AB的中点,E,F分别落在线段BC,AD上.已知AB=20米,AD=10米,记∠BHE=θ.
(1)试将污水净化管道的长度L表示为θ的函数,并写出定义域;
(2)若sinθ+cosθ=,求此时管道的长度L;
(3)问:当θ取何值时,污水净化效果最好?
并求出此时管道的长度.