游客
题文

某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级子棉2吨、二级子棉1吨;生产乙种棉纱需耗一级子棉1吨、二级子棉2吨,每1吨甲种棉纱的利润是600元,每1吨乙种棉纱的利润是900元,工厂在生产这两种棉纱的计划中要求消耗一级子棉不超过300吨、二级子棉不超过250吨.甲、乙两种棉纱应各生产多少(精确到吨),能使利润总额最大?

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

若椭圆与双曲线有相同的焦点,且椭圆与双曲线交于,求椭圆及双曲线的方程.

已知命题;命题表示焦点轴上的椭圆,若,求实数的取值范围.

已知函数f(x)对任意实数x均有f(x)="k" f(x+2),其中常数k为负数,且f(x)在区间[0,2]有表达式f(x)=x(x-2)。
⑴求f(-1),f(2.5)的值(用k表示);
⑵写出f(x)在[-3,2]上的表达式,并讨论f(x)在[-3,2]上的单调性(不要证明);
⑶求出f(x)在[-3,2]上最小值与最大值,并求出相应的自变量的取值。

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用的旧墙需维修),其他三面围墙要新建,在旧墙对面的新墙上要留一个宽度为2m的进出口,如图所示已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙长度为x(单位:m),修建此矩形场地围墙的总费用为y(单位:元)
⑴将y表示为x的函数;
⑵写出f(x)的单调区间,并证明;
⑶根据⑵,试确定x,使修建此矩形场地围墙的总费用最小,并求出最小总费用。

已知ABCD四点的坐标分别为 A(1,0), B(4,3),
C(2,4),D(0,2)
⑴证明四边形ABCD是梯形;
⑵求COS∠DAB。
⑶设实数t满足(-t=0,求t的值。

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号