已知中,
,
,
成等差数列,求点
的轨迹。
已知函数是常数
且
)在区间
上有
(1)求的值;
(2)若当
时,求
的取值范围;
已知集合
(1)能否相等?若能,求出实数
的值,若不能,试说明理由?
(2)若命题命题
且
是
的充分不必要条件,求实数
的取值范围;
已知且
(1)求的值;
(2)求的值;
已知幂函数的图象与x轴,y轴无交点且关于原点对称,又有函数f(x)=x2-alnx+m-2在(1,2]上是增函数,g(x)=x-
在(0,1)上为减函数.
①求a的值;
②若,数列{an}满足a1=1,an+1=p(an),(n∈N+),数列{bn},满足
,
,求数列{an}的通项公式an和sn.
③设,试比较[h(x)]n+2与h(xn)+2n的大小(n∈N+),并说明理由.
已知二次函数h(x)=ax2+bx+c(其中c<3),其导函数的图象如图,f(x)=6lnx+h(x).
①求f(x)在x=3处的切线斜率;
②若f(x)在区间(m,m+)上是单调函数,求实数m的取值范围;
③若对任意k∈[-1,1],函数y=kx(x∈(0,6])的图象总在函数y=f(x)图象的上方,求c的取值范围.