若,试求
的取值范围.
(本小题满分12分)科研所研究人员都具有本科和研究生两类学历,年龄段和学历如下表,从该科研所任选一名研究人员,是本科生概率是,是35岁以下的研究生概率是
.
(Ⅰ)求出表格中的和
的值;
(Ⅱ)设“从数学教研组任选两名教师,本科一名,研究生一名,50岁以上本科生和35岁以下的研究生不全选中” 的事件为A,求事件A概率P(A).
(本小题满分12分)
如图,已知棱柱的底面是菱形,且
面
,
,
=1,
为棱
的中点,
为线段
的中点.
(Ⅰ)求证:面
;
(Ⅱ)试判断直线MF与平面的位置关系,并证明你的结论;
(Ⅲ)求三棱锥的体积.
(本小题满分12分)
已知向量:,
,函数
.
(1)求函数的最小正周期和单调递增区间;
(2)求的对称轴并作出
在
的图象.
(本小题满分13分)已知数列中,
,
.
(Ⅰ)若,设
,求证数列
是等比数列,并求出数列
的通项公式;
(Ⅱ)若,
,
,证明:
.
(本小题满分13分)已知椭圆(
)的离心率为
,且短轴长为2.
(Ⅰ)求椭圆的方程;
(Ⅱ)若与两坐标轴都不垂直的直线与椭圆交于
两点,
为坐标原点,且
,
,求直线
的方程.