已知数列满足:
其中
,数列
满足:
(1)求;
(2)求数列的通项公式;
(3)是否存在正数k,使得数列的每一项均为整数,如果不存在,说明理由,如果存在,求出所有的k.
已知函数
(1)若方程内有两个不等的实根,求实数m的取值范围;(e为自然对数的底数)
(2)如果函数的图象与x轴交于两点
、
且
.求证:
(其中正常数
).
已知椭圆C的两个焦点分别为,且点
在椭圆C上,又
.
(1)求焦点F2的轨迹的方程;
(2)若直线与曲线
交于M、N两点,以MN为直径的圆经过原点,求实数b的取值范围.
如图,已知四棱锥的底面的菱形,
,点
是
边的中点,
交于点
,
(1)求证:;
(2)若的大小;
(3)在(2)的条件下,求异面直线与
所成角的余弦值。
袋中装有若干个质地均匀大小一致的红球和白球,白球数量是红球数量的两倍.每次从袋中摸出一个球然后放回,若累计3次摸到红球则停止摸球,否则继续摸球直至第5次摸球后结束.
(1)求摸球3次就停止的事件发生的概率;
(2)记摸到红球的次数为,求随机变量
的分布列及其期望.