游客
题文

某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度(米)随着时间而周期性变化,每天各时刻的浪高数据的平均值如下表:


0
3
6
9
12
15
18
21
24

1.0
1.4
1.0
0.6
1.0
1.4
0.9
0.5
1.0

试画出散点图;
观察散点图,从中选择一个合适的函数模型,并求出该拟合模型的解析式;
如果确定在白天7时~19时当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.

科目 数学   题型 解答题   难度 容易
知识点: 多面角及多面角的性质
登录免费查看答案和解析
相关试题

已知函数
(1)求的值;
(2)求函数的单调区间;
(3)函数的图像可由的图像如何变换得来,请详细说明.

已知集合
(1)若,求的取值范围;
(2)若,求的取值范围.

(本小题共14分)已知函数(其中常数).
(1)求函数的定义域及单调区间;
(2)若存在实数,使得不等式成立,求的取值范围.

(本小题共13分)△ABC的三个内角A,B,C的对边分别为a,b,c,且△ABC的面积为.
(1)若,求角A,B,C的大小;
(2 )若a=2,且,求边c的取值范围.

(本小题共14分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2

(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号