某“帆板”集训队在一海滨区域进行集训,该海滨区域的海浪高度(米)随着时间
而周期性变化,每天各时刻
的浪高数据的平均值如下表:
![]() |
0 |
3 |
6 |
9 |
12 |
15 |
18 |
21 |
24 |
![]() |
1.0 |
1.4 |
1.0 |
0.6 |
1.0 |
1.4 |
0.9 |
0.5 |
1.0 |
试画出散点图;
观察散点图,从
中选择一个合适的函数模型,并求出该拟合模型的解析式;
如果确定在白天7时~19时当浪高不低于0.8米时才进行训练,试安排恰当的训练时间.
已知函数.
(1)求的值;
(2)求函数的单调区间;
(3)函数的图像可由
的图像如何变换得来,请详细说明.
已知集合.
(1)若,求
的取值范围;
(2)若,求
的取值范围.
(本小题共14分)已知函数(其中常数
).
(1)求函数的定义域及单调区间;
(2)若存在实数,使得不等式
成立,求
的取值范围.
(本小题共13分)△ABC的三个内角A,B,C的对边分别为a,b,c,且△ABC的面积为.
(1)若,求角A,B,C的大小;
(2 )若a=2,且,求边c的取值范围.
(本小题共14分)如图1,在Rt△ABC中,∠C=90°,D,E分别为AC,AB的中点,点F为线段CD上的一点,将△ADE沿DE折起到△A1DE的位置,使A1F⊥CD,如图2
(1)求证:DE∥平面A1CB;
(2)求证:A1F⊥BE;
(3)线段A1B上是否存在点Q,使A1C⊥平面DEQ?说明理由.