已知函数的图象上有一个最低点
,将图象上每个点的纵坐标不变,横坐标缩小到原来的
,然后将所得图象向左平移一个单位得到
的图象,若方程
的所有正根依次成为一个公差为3的等差数列,求
的解析式.
(本小题满分14分)已知数列满足
为
的前n项和。
(1)求证:数列是等比数列,并求
的通项公式;
(2)如果对于任意,不等式
恒成立,求实数
的取值范围.
(本小题满分14分)
在如图所示的多面体中,⊥平面
,
,
,
,
,
,
,
是
的中点.
(1)求证:;
(2)求平面与平面
所成锐二面角的余弦值.
(本小题满分12分)
某工厂2011年第一季度生产的A、B、C、D四种型号的产品产量用条形图表示如图,现用分层抽样的方法从中选取50件样品参加四月份的一个展销会:
(1)问A、B、C、D型号的产品各抽取多少件?
(2)从A、C型号的产品中随机的抽取3件,用表示抽取A种型号的产品件数,求
的分布列和数学期望。
(本小题满分分)已知函数
,
(1)求该函数的最小正周期和最小值;
(2)若,求该函数的单调递增区间。
(本题满分14分)
定义在(0,+∞)上的函数,
,且
在
处取极值。
(Ⅰ)确定函数的单调性。
(Ⅱ)证明:当时,恒有
成立.