某化工厂引进一条先进生产线生产某种化工产品,其生产的总成本(万元)与年产量
(吨)之间的函数关系式可以近似地表示为
,已知此生产线年产量最大为210吨。
(1)求年产量为多少吨时,生产每吨产品的平均成本最低,并求最低成本;
(2)若每吨产品平均出厂价为40万元,那么当年产量为多少吨时,可以获得最大利润?最大利润是多少?
求圆心在直线y=-2x上,并且经过点A(2,-1),与直线x+y=1相切的圆的方程.
已知sina=,aÎ(
,p),cosb=-
,b是第三象限的角.
⑴ 求cos(a-b)的值;
⑵ 求sin(a+b)的值;
⑶ 求tan2a的值.
在△ABC中,已知B=45°,D是BC边上的一点,AD=10,AC=14,DC=6,
求⑴ ∠ADB的大小;⑵ BD的长.
已知函数;
(1)若函数在其定义域内为单调递增函数,求实数
的取值范围。
(2)若函数,若在[1,e]上至少存在一个x的值使
成立,求实数
的取值范围。
已知函数,
(1)求函数的定义域;
(2)求函数在区间
上的最小值;
(3)已知,命题p:关于x的不等式
对函数
的定义域上的任意
恒成立;命题q:指数函数
是增函数.若“p或q”为真,“p且q”为假,求实数m的取值范围.