已知正数数列的前
项和为
,
,数列
满足
.(Ⅰ)求数列
和
的通项公式; (Ⅱ)当
时,
,求数列
的前
项和
.
(本小题满分12分)如图,在长方体ABCD-A1B1C1D1中,AA1=AB=2AD=2,E为AB的中点,F为D1E上的一点,D1F=2FE.
(Ⅰ)证明:平面平面
;
(Ⅱ)求二面角的平面角的余弦值.
(本小题满分12分)某校举行中学生“珍爱地球·保护家园”的环保知识比赛,比赛分为初赛和复赛两部分,初赛采用选手从备选题中选一题答一题的方式进行;每位选手最多有5次答题机会,选手累计答对3题或答错3题即终止比赛,答对3题者直接进入复赛,答错3题者则被淘汰.已知选手甲答对每个题的概率均为,且相互间没有影响.
(Ⅰ)求选手甲进入复赛的概率;
(Ⅱ)设选手甲在初赛中答题的个数为,试求的分布列和数学期望.
(本小题满分12分)在△ABC中,内角,
,
的对边长分别为a,b,c,且
.
(Ⅰ)求角的大小;
(Ⅱ)若a=3,,求△ABC的面积.
(本小题满分14分)函数,
.
(Ⅰ)当a > 0时,求函数f (x)的极值;
(Ⅱ)当a在R上变化时,讨论函数f (x)与g (x)的图象公共点的个数;
(Ⅲ)求证:.(参考数据:
)
(本小题满分13分).已知点A、B的坐标分别为(,0)、(2,0),直线AT、BT交于点T,且它们的斜率之积为常数
,点T的轨迹以及A、B两点构成曲线C.
(Ⅰ)求曲线C的方程,并求其焦点坐标;
(Ⅱ)若,且曲线C上的点到其焦点的最小距离为1.设直线l:
交曲线C于M、N,直线AM、BN交于点P.
(ⅰ)当m = 0时,求点P的坐标;
(ⅱ)当m变化时,是否存在直线l1,使P总在直线l1上?若存在,求出l1的方程;若不存在,请说明理由.