已知函数f(x)=loga(1+x),g(x)=loga(1-x),其中(a>0且a≠1),设h(x)=f(x)-g(x).
(1)求函数h(x)的定义域;
(2)判断h(x)的奇偶性,并说明理由;
(3)若f(3)=2,求使h(x)>0成立的x的集合.
如图,已知为平行四边形
所在平面外一点,
为
的中点,
求证:平面
.
△ABC中,,求
。
已知a=3,c=2,B=150°,求边b的长及S△.
设函数,
.
(1)解不等式:;
(2)若的定义域为
,求实数
的取值范围.
定义:如果数列的任意连续三项均能构成一个三角形的三边长,则称
为“三角形”数列.对于“三角形”数列
,如果函数
使得
仍为一个“三角形”数列,则称
是数列
的“保三角形函数”,
.
(Ⅰ)已知是首项为2,公差为1的等差数列,若
是数列
的“保三角形函数”,求k的取值范围;
(Ⅱ)已知数列的首项为2010,
是数列
的前n项和,且满足
,证明
是“三角形”数列;
(Ⅲ)根据“保三角形函数”的定义,对函数,
,和数列1,
,
,(
)提出一个正确的命题,并说明理由.