袋中装有大小、质地相同的8个小球,其中红色小球4个,蓝色和白色小球各 2个.某学生从袋中每次随机地摸出一个小球,记下颜色后放回.规定每次摸出红色小球记2分,摸出蓝色小球记1分,摸出白色小球记0分.(Ⅰ)求该生在4次摸球中恰有3次摸出红色小球的概率;(Ⅱ)求该生两次摸球后恰好得2分的概率;(Ⅲ)求该生两次摸球后得分的数学期望.
如图, D是直角△ABC斜边BC上一点,AB=AD,记∠CAD=,∠ABC=. (1)证明 ; (2)若AC=DC,求的值.
已知数列是等差数列,且,. ⑴ 求数列的通项公式; ⑵ 令,求数列的前项和.
设, (1)写出函数的最小正周期及单调增区间; (2)若时,求函数的最值。
直线过点P(-2,1), (1)若直线与直线平行,求直线的方程; (2)若点A(-1,-2)到直线的距离为1,求直线的方程。
等比数列{}的前n 项和为,已知,,成等差数列。 (1)求{}的公比q;(2)求-=3,求
试卷网 试题网 古诗词网 作文网 范文网
Copyright ©2020-2025 优题课 youtike.com 版权所有
粤ICP备20024846号