如图5-9所示,半径为R的光滑圆形轨道固定在竖直面内。小球A、B质量分别为m、βm(β为待定系数)。A球从左边与圆心等高处由静止开始沿轨道下滑,与静止于轨道最低点的B球相撞,碰撞后A、B球能达到的最大高度均为,碰撞中无机械能损失。重力加速度为g。试求:
待定系数β;
第一次碰撞刚结束时小球A、B各自的速度和B球对轨道的压力;
小球A、B在轨道最低处第二次碰撞刚结束时各自的速度,并讨论小球A、B在轨道最低处第n次碰撞刚结束时各自的速度。
(1)如图6-15,在光滑水平长直轨道上,放着一个静止的弹簧振子,它由一轻弹簧两端各连接一个小球构成,两小球质量相等.现突然给左端小球一个向右的速度u0,求弹簧第一次恢复到自然长度时,每个小球的速度.
(2)如图6-16,将N个这样的振子放在该轨道上,最左边的振子1被压缩至弹簧为某一长度后锁定,静止在适当位置上,这时它的弹性势能为E0.其余各振子间都有一定的距离,现解除对振子1的锁定,任其自由运动,当它第一次恢复到自然长度时,刚好与振子2碰撞,此后,继续发生一系列碰撞,每个振子被碰后刚好都是在弹簧第一次恢复到自然长度时与下一个振子相碰.求所有可能的碰撞都发生后,每个振子弹性势能的最大值.已知本题中两球发生碰撞时,速度交换,即一球碰后的速度等于另一球碰前的速度.
图6-15
图6-16
如图6-12质量为m1的物体A经一轻质弹簧与下方地面上的质量为m2的物体B相连,弹簧的劲度系数为k,A、B都处于静止状态.一条不可伸长的轻绳绕过轻滑轮,一端连物体A,另一端连一轻挂钩,现在挂钩上挂一质量为m3的物体C并从静止状态释放,已知它恰好能使B离开地面但不继续上升.若将C换成另一个质量为(m1+m3)的物体D,仍从上述初始位置由静止状态释放,则这次B刚离地时D的速度的大小是多少?已知重力加速度为g.
图6-12
在原子核物理中,研究核子与核子关联的最有效途径是“双电荷交换反应”.这类反应的前半部分过程和下述力学模型类似.两个小球A和B用轻质弹簧相连,在光滑的水平轨道上处于静止状态.在它们左边有一垂直于轨道的固定挡板P,右边有一个小球C沿轨道以速度v0射向B球,如图6-4-9所示,C与B发生碰撞并立即结成一个整体D.在它们继续向左运动的过程中,当弹簧长度变到最短时,长度突然被锁定,不再改变.然后,A球与挡板P发生碰撞,碰后A、D都静止不动,A与P接触而不黏连.过一段时间,突然解除锁定(锁定及解除锁定均无机械能损失).已知A、B、C三球的质量均为m,求:
图6-4-9
(1)弹簧长度刚被锁定后A球的速度;
(2)在A球离开挡板P之后的运动过程中,弹簧的最大弹性势能.
在固定的光滑水平杆(杆足够长)上,套有一个质量为m="0.5" kg 的光滑金属圆环.一根长为L="1" m的轻绳,一端拴在环上,另一端系着一个质量为M="2" kg 的木块,如图6-4-8所示.现有一质量为m0="20" g的子弹以v0="1" 000 m/s的水平速度射穿木块,子弹穿出木块后的速度为v="200" m/s(不计空气阻力和子弹与木块作用的时间),试问:
图6-4-8
(1)当子弹射穿木块后,木块向右摆动的最大高度为多大?
(2)当木块第一次返回到最低点时,木块的速度是多大?
(3)当木块第一次返回到最低点时,水平杆对环的作用力是多大?
有一炮竖直向上发射炮弹,炮弹的质量为M="6.0" kg(内含炸药的质量可以忽略不计),射出的初速度v0="60" m/s.当炮弹到达最高点时爆炸为沿水平方向运动的两片,其中一片质量为m="4.0" kg.现要求这一片不能落到以发射点为圆心、以R="600" m为半径的圆周范围内,则刚爆炸完时两弹片的总动能至少多大?(g取10 m/s2,忽略空气阻力)