(本题满分12分)F1、F2分别是双曲线x2-y2=1的两个焦点,O为坐标原点,圆O是以F1F2为直径的圆,直线l:y=kx+b (b>0)与圆O相切,并与双曲线相交于A、B两点.(Ⅰ)根据条件求出b和k满足的关系式;(Ⅱ)向量在向量
方向的投影是p,当(×)p2=1时,求直线l的方程;(Ⅲ)当(×)p2=m且满足2≤m≤4时,求DAOB面积的取值范围.
已知函数.
(1)求函数的最小正周期;
(2)判断函数的奇偶性, 并说明理由。
我们把一系列向量排成一列,称为向量列,记作
,又设
,假设向量列
满足:
,
。
(1)证明数列是等比数列;
(2)设表示向量
间的夹角,若
,记
的前
项和为
,求
;
(3)设是
上不恒为零的函数,且对任意的
,都有
,若
,
,求数列
的前
项和
.
已知数列的各项均为正数,其前
项和为
,且
,
,数列
是首项和公比均为
的等比数列.
(1)求证数列是等差数列;
(2)若,求数列
的前
项和
.
在中,内角
对边的长分别是
,且
.
(1)若的面积等于
,求
;
(2)若,求
的面积.
在中,角
的对边分别为
,向量
,
,且
;
(1)求的值;
(2)若,
,求角
的大小及向量
在
方向上的投影值.