游客
题文

设椭圆 的离心率为,点,0),(0,),原点到直线的距离为
(Ⅰ)求椭圆的方程;
(Ⅱ)设点为(,0),点在椭圆上(与均不重合),点在直线上,若直线的方程为,且,试求直线的方程.

科目 数学   题型 解答题   难度 较易
登录免费查看答案和解析
相关试题

已知四棱锥P—GBCD中(如图),PG⊥平面GBCD,GD∥BC,GD=BC,且BG⊥GC,GB=GC=2,E是BC的中点,PG=4

(1)求异面直线GE与PC所成角的余弦值;
(2)若F点是棱PC上一点,且,求的值.

袋中共有10个大小相同的编号为1、2、3的球,其中1号球有1个,2号球有3个,3号球有6个.
(1)从袋中任意摸出2个球,求恰好是一个2号球和一个3号球的概率;
(2)从袋中任意摸出2个球,记得到小球的编号数之和为,求随机变量的分布列和数学期望

已知正项数列满足:
(1)求通项
(2)若数列满足,求数列的前和.

已知数列{}的前n项和(n为正整数)。
(1)令,求证数列{}是等差数列,并求数列{}的通项公式;
(2)令,求并证明:<3.

已知椭圆C:(a>b>0),过点(0,1),且离心率为
(1)求椭圆C的方程;
(2)A,B为椭圆C的左右顶点,直线lx=2x轴交于点D,点P是椭圆C上异于A,B的动点,直线AP,BP分别交直线l于E,F两点.证明:当点P在椭圆C上运动时,恒为定值.

Copyright ©2020-2025 优题课 youtike.com 版权所有

粤ICP备20024846号